
AD-A255 269
IUtl El N I E l

VARIABLE AND VALUE ORDERING HEURISTICS
FOR

HARD CONSTRAINT SATISFACTION PROBLEMS:
AN APPLICATION TO JOB SHOP SCHEDULING

Norman M. Sadeb and Mark S. Fox

CM-U-RI-TR-91-23

Center for Integrated Manufacturing Decision Systems
The Robotics Institute

Carnegie Mellon University
Pittsburgh, Pennsylvania 15213

DTIC November 1991SELECTlE

SEP 151992
A ~disiltibuticn i uniinwtý.

Copyright C 1991 Sadeh
This material may be reproduced by or for the U.S. Government pursuant to the copyright license under
the clause at DFARS 252.227-7013, October 1988.

rV 92-25104

92 9 14 002 • __.•

This research was supported, in part, by the Defense Advance Research Projects Agency under contract
#F30602-88-C-0001, and in part by grants from McDonnell Aircraft Company and Digital Equipment
Corporation

REPORT DOCAUMENTkTýON PAGE Form Appovod

punk qg~ninq burfden for this (oflemsoi of intormationm 700"4100a to *~fAqeo I -ou't gel 'emoOMS. ndcludunq Pe hie f.riev~ewng IfhtUc1ions. warhinq existing data sourtes.
9twWqand ,namtstaeflng thle isati rafed, and coemp~emnqe duUmIl PCcIK. oii ,Moot m.rtotnton Sehid toorrienoft "readin this burden estifouste ot anv other aspect of trip

=04.toAtflt'~If..l 1 Ilot~h reuonq tu taetO*uqon 4eadisuarter Sarveic. O,,.clorale for Informati.on 0ovat~ons and Esortits. I1J1IS Jeferson
Ode~hl*Cv $~tS120. Ah~Iof.V2202.4302. and to the Offic@t ofMansqm~fint ansd Suagiet. I'Serwouit ReductionProject (0704-018). Wavuonqtoas. DC 2O0503

1. AGENCY USE ONLY (Leave Wlank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

I November 1991 technical ________________

4.TITLE AND SUBTITLE S. FUNDING NUMBERS

Variable and Value Ordering Heuristics for Hard Constraint Satisfaction F30602-88-C-OOO1
Problems: An Application to Job Shop Scheduling

G. AUTHOR(S)

Norman M. Sadeb and Mark S. Fox

7. PERFORMING ORGANIZATION NAME(S) AND AODRESS(ES) B. PERFORMING ORGANIZATION
REPORT NUMBER

The Robotics Institute
Carnegie Mellon University CMU-RJ-TR-9 1-23
Pittsburgh, PA 15213

AGNYREPORT NUMBER

12a.DISRIBTIO/ AAILAILIY SATEENT12b. DISTRIBUTION CODE

Approved for public release;
Distribution unlimited

13. ABSTRACT :Masimum .'OOworrJSI
Hard constraint Satisfaictiont piroblems (HCSPs) are Constraint Satisfaction Problems (CSPs) with very large search
spaces and very few solutions. Real-life problems such as design or factory scheduling are examples of HCSPs. These
problems typically involve several hundred (or even several thousand) variables, each with up to several hundred possible
values, only a very tiny fraction of which ultimately allows for a satisfying solution. Ibis pape addresss the issue of
how to generate advice to decide which variable to instantiate next (i.e., variable ordering heuristics), and which value to
assign to that variable (i.e., value ordering heuristics) in order to reduce search for a solution. Our investigation is
conducted in the domain of job shop scheduling. It is shown that, in this domain, generic CSP heuristics are usually not
sufficient to guide the search for a feasible solution. This is because these heuristics fail to properly account for the
tightness of constraints and/or the connectivity of the constraint graph. Instead, a probabilistic model of the search space
is used to defmin new heuristics, which better account for these problem characteristics. Experimental results indicate that
these new heuristics yield important improvements in both search efficiency and search time.

14. SUBJECT TERMS 15. NUMBER OF PAGES
51 pp

16. PRICE CODE

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT unimiIted OF THIS PRAMMIted OF ABUAWITtWiJd unlimited

~~ .~' NJ,.l. . f. .arra. -

Table of Contents
1 Introduction 2
2 The Job Shop Constraint Satisfaction Problem 4
3 The Search Procedure 8
4 Shortcomings of Popular Variable Ordering Heuristics 11
5 Shortcomings of Popular Value Ordering Heuristics 16
6 New Variable and Value Ordering Heuristics 19

6.1 Underlying Assumptions 19
6.2 A Probabilistic Model of the Search Space 20
6.3 A Variable Ordering Heuristic Based on Measures of Resource 24

Contention
6.4 A Value Ordering Heuristic Avoiding Resource Contention 25

6.4.1 Estimating the Probability that a Reservation Survives Contention 26
6.4.2 Estimating the Probability that a Job Schedule Survives 29

Contention
6.4.3 Further Refinement 32

7 Overall Complexity 33
8 Empirical Evaluation 34

8.1 Design of the Test Data 34
8.2 Comparison Against Other Heuristics 35

9 Summary and Conclusions 39
Appendix A. Redundant Capacity Constraints 42
Appendix B. Counting the Number of Survivable Schedules 44

NTIS T

D'istic-h r

% IC '.

y

Ah u'',•., /Y

Av ;: ',,,.. .

ii

List of Figures
Figure 1: Examples of tree-like process routings. 4
Figure 2: A simple job shop problem with 4 jobs. Each node is labeled by 6

the operation that it represents and the resource required by
this operation.

Figure 3: The same job shop CSP after consistency labeling. Start time 12
labels are represented as intervals. For instance, [0,6]
"represents all start times between time 0 and time 6, as allowed
by the time granularity, namely {0,1,2,3,4,5,6).

Figure 4: A new resource R5 is added to the problem. R1,5 stands for R1 14
or R5. R3,5 stands for R3 or R5.

Figure 5: An MST relaxation of the scheduling problem. 18
Figure 6: Building R2's aggregate demand prorfle in the initial search 22

state.
Figure 7: Aggregate demands in the initial search state for each of the 23

four resources.
Figure 8: ORR Heuristic: the most critical operation is the one that relies 25

most on the most contended resource/time interval.
Figure 9: Survivability measures for the reservations of operations in job 28

j 3, the job to which belongs O0, the current critical operation.
Figure 10: Value goodness for 03 expressed as the number of compatible 31

job schedules expected to survive resource contention.
Figure I-1: A situation with an oversubscribed resource that can easily be 43

detected.
Figure H-1: A tree-like process routing, organized with the current 44

critical operation as its root. Arrows represent precedence
constraints.

i1°

List of Tables
Table 1: Comparison of 5 heuristics over 6 sets of 10 job shop problems. 37

Standard deviations appear between parentheses.

Abstract

Hard Constraint Satisfaction Problems (HCSPs) are Constraint Saisfaction Problems (CSPs)
with very large search spaces and very few solutions. Real-life problems such as design or
factory scheduling are examples of HCSPs. These problems typically involve several hundred
(or even several thousand) variables, each with up to several hundred possible values, only a
very tiny fraction of which ultimately allows for a satisfying solution. This paper addresses the
"issue of how to generate advice to decide which variable to instantiate next (i.e. variable
ordering heuristics), and which value to assign to that variable (i.e. value ordering heuristics) in
order to reduce search for a solution. Our investigation is conducted in the domain of job shop
scheduling. It is shown that, in this domain, generic CSP heuristics are usually not sufficient to
guide the search for a feasible solution. This is because these heuristics fail to properly account
for the tightness of constraints and/or the connectivity of the constraint graph. Instead, a
probabilistic model of the search space is used to define new heuristics, which better account for
these problem characteristics. Experimental results indicate that these new heuristics yield
important improvements in both search efficiency and search time.

2

1 Introduction
Hard Constraint Satisfaction Problems (HCSPs) are Constraint Satisfaction Problems (CSPs)
with very large search spaces and very few solutions. Real-life problems such as design [26] or
factory scheduling [9, 38] are examples of HCSPs. These problems typically involve hundreds of
variables, each with up to several hundred possible values, only a very tiny fraction of which
ultimately allows for a satisfying solution. This paper addresses the issue of how to generate
advice to decide which variable to instantiate next (i.e. variable ordering heuristics), and which
value to assign to that variable (i.e. value ordering heuristics) in order to reduce search for a
solution. Our investigation is conducted in the domain of job shop scheduling.

More specifically, we study a variation of the job shop scheduling problem, referred to as the job
shop CSP, in which operations have to be performed within non-relaxable time windows.
Examples of such problems include factory scheduling problems, in which some operations have
to be performed within one or several shifts, spacecraft mission scheduling problems, in which
time windows are determined by astronomical events over which we have no control, factory
rescheduling problems, in which a small set of operations need to be rescheduled without
revising the schedule of other operations, etc. The objective assumed in this study requires
finding a feasible schedule as fast as possible. An adaptation of the techniques presented in this
paper to a Constrained Optimization version of the problem can be found in [38, 39].

The job shop CSP is a well-known NP-complete problem [12]. Accordingly, the worst-case
complexity of any procedure to solve this problem is expected to be exponential. CSP techniques
that interleave search with consistency enforcing techniques and variable/value ordering
heuristics have been reported to yield important increases in search efficiency when applied to
other CSPs [15, 11, 32, 20, 6, 25, 46, 7, 10]. One of the aims of this study is to determine if
similar savings can be obtained in the case of the job shop CSP, and, more generally, if, on the
average, the CSP paradigm is sufficient to efficiently solve HCSPs like job shop scheduling. In
order to address this difficult question, we first review generic variable and value ordering
heuristics that have been reported to perform particularly well on other CSPs. The review
suggests that these heuristics are often too weak to solve HCSPs like job shop scheduling. This
is because these heuristics fail to properly account for the tightness of constraints and/or for the
interactions induced by the high connectivity of the constraint graphs often encountered in job
shop scheduling problems'. The second part of this paper introduces a probabilistic framework,
within which new variable and value ordering heuristics are defined that better account for these
interactions. Our study suggests that a key to defining these more powerful heuristics lies in the
ability of the probabilistic framework to provide estimates of the reliance of a variable on the
availability of one of its remaining values (e.g., in job shop scheduling, the reliance of an
operation on the availability of a reservation), and measures of contention between variables for
the allocation of incompatible values (e.g., in job shop scheduling, measures of resource

1Constraint graphs are graphical representations of binary CSPs (i.e. CSPs with binary constraims) in which each
variable is represented by a node, and binary constraints are represented by arcs between two nodes.

3

contenion between unscheduled operations).

Experimental results indicate that these new heuristics outperform both generic CSP heuristics as
well as more specialized heuristics recently developed for similar job shop CSPs. This work also
shows that, despite its exponential worst-case complexity, the job shop CSP admits many
instances that can be solved efficiently. There remain however some particularly difficult
problems that require larger amounts of search.

Last but not least, this study strongly suggests that benchmark problems often used in the CSP
literature are not representative of HCSPs like job shop scheduling. It is hoped that this work will
prompt researchers in the field to look for new benchmark problems and new more powerful
heuristics for these problems.

Section 2 of this paper provides a formal definition of the job shop scheduling CSP. Section 3
details the backtrack search procedure used in our study. Shortcomings of popular variable and
value ordering heuristics are respectively discussed in Sections 4 and 5. Section 6 describes new
variable and value ordering heuristics based on a probabilistic model of the search space. The
complexity of these heuristics as well as that of the overall approach are discussed in Section 7.
Experimental results comparing our new heuristics with other heuristics discussed in this paper
are presented in Section 8. Section 9 summarizes the paper, and further discusses the
implications of our study.

Earlier variations of the techniques presented in this paper are discussed in
[33, 34, 35, 36, 10, 37].

4

2 The Job Shop Constraint Satisfaction Problem
The job shop CSP requires scheduling a set of jobs J= Jl. ,n) on a set of physical resources

RES= (R 1 ,... ,Rm }. Each job. /'consists of a set of operations O0= { 1 ,..., 0, } to be scheduled

according to a process routing that specifies a partial ordering among these operations (e.g. Oi
BEFORE O.). This study assumes job shop CSPs with tree-like process routings. A tree-like
process routing is one whose graph of precedence constraints forms a tree2 . Two examples of
tree-like process routings are depicted in Figure 1.

Figure 1: Examples of tree-like process rouzings.

In the job shop CSP studied in this paper, each job Jl has a release date rd1 and a due-date dd)1
between which all its operations have to be performed. Each operation 01 has a fixed duration

duI and a variable start time srI. The domain of possible start times of each operation is initially

constrained by the release and due dates of the job to which the operation belongs. If necessary,

the model allows for additional unary constraints that further restrict the set of admissible start

times of each operation, thereby defining one or several time windows within which an operation

has to be carried out (e.g. a specific shift in factory scheduling). In order to be successfully

executed, each operation 01 requires p[different resources (e.g. a milling machine and a

machinist -1 (Pi), for each of which there may be a pool of physical resources from

which to choose, xzjiiz,.,. j}, with rijk e RES (I- •k_ q') (e.g. several possible milling

machines).

More formally, the problem can be defined as follows:

2Tbis is by far the most common situation, especially in factory scheduling. Extensions of the techniques
presented in this paper to more general types of process routings will be briefly discussed as well.

5

VARIABLES:

The variables of the problem are:

1. the operation start times, st, (1 <_ 1 <n, 1 :_ i5 ni), and

2. the resources, Gi, (1: l<n, 1 <_i -n/, 1 <j<-pl) selected for those resource
"requirements for which an operation has several alternatives.

In our search procedure, each operation is considered an aggregate variable (or vector) consisting
of the start time of the operation and each one of its resource requirements.

CONSTRAINTS:

The non-unary constraints of the problem are of two types:
1. Precedence constraints defined by the process routings translate into linear

inequalities of the type: dr+du' d_ (i.e. o0 BEFORE 0!);

2. Capacity constraints that restrict the use of each resource to only one operation at

a time translate into disjunctive constraints of the form:
(VpVq R' #Rk) v stý+du <std v st+duJ <sti. These constraints simply express
that, unless they use different resources, two operations ok and &1 cannot overlap3 .

Additionally, there are unary constraints restricting the set of possible values of individual
variables. These constraints include non-relaxable due dates and release dates, between which all
operations in a job need to be performed. The model actually allows any type of unary constraint
that further restricts the set of possible start times of an operation. Time is assumed discrete, i.e.
operation start times and end times can only take integer values. Finally, each resource
requirement R,. has to be selected from a set of resource alternatives, L21\ c RES.

OBJECTIVE:

In the job shop CSP studied in this paper, the objective is to come up with a feasible solution as
fast as possible. Notice that this objective is different from simply minimizing the number of
search states visited. It also accounts for the time spent by the system deciding which search state
to explore next.

EXAMPLE:

Figure 2 depicts a simple job shop scheduling problem with four jobs J= [J ,J2 ,J3 ,'41 and four
physical resources RES= { R1 ,R2 ,R3,R4 }. In this example, each operation has a single resource
requirement with a single possible value. Operation start times are the only variables. For the

3 These constraints have to be generalized when dealing with resources of capacity larger than one.

6

01 R, 02R2 10 R3

2 C S

CI capacity constraint

Pi " precedence constraint

Figure 2: A simple job shop problem with 4 jobs. Each node
is labeled by the operation that it represents and the

resource required by this operation.

sake of simplicity, it is assumed that all operations have the same duration, namely 3 time units,
that all jobs are released at time 0 and have to be completed by time 15 (the minimum makespan
of this problem4). None of these simplifying assumptions is required by the techniques that will
be discussed: jobs usually have different release and due dates, operations can have different
durations, s¢• eral resource requirements, and several alternatives for each of these requirements.
However simple, this example will often tur out to be sufficient to highlight the shortcomings
of some popular CSP heuristics. If necessary, the example will be slightly complicated in order
to emphasize other shortcomings that would not be immediately visible otherwise.

Notice that, in this problem, resource R2 is the only one to be required by four operations (one

from each job). Since all operations in the example have the same duration, resource R2 is

4Temakespan of a schedule is the length of the time interval that spans from the earliest operation start time to
the latest operation end time [2].

7

expected to be a small bottleneck 5 .

5-nfornaily, a bottleneck is a resource or group of resources whose utilization is expected to be close to or larger
than its available capacity.

8

3 The Search Procedure
A general paradigm for solving CSPs relies on the use of depth-first backtrack search
[43, 14,3,30]. Within this context, variables or groups of variables (i.e. subproblems) are

successively instantiated (i.e. assigned a value). Each time a new variable (or group of variables)
is instantiated, a new search state is created that corresponds to a new, more complete, partial
solution. This process goes on until either a complete solution is obtained or until a so-called
deadend state is reached that cannot be completed without violating one or several problem
constraints. In the latter case, the system needs to undo one or several assignments and try
alternative ones, if there are any left (otherwise the problem is infeasible). This process of
undoing earlier assignments is known as backtracking. It results in lower search efficiency, and,
hence, is undesirable.

In the worst case, for NP-complete CSPs such as the job shop scheduling CSP, exponential
amounts of backtracking may be necessary to come up with a feasible solution (schedule). In
practice, as demonstrated by the experimental study presented in this paper, it is generally
possible to maintain the average complexity of the procedure at a very low level. This is
achieved by interleaving search with the application of consistency enforcing techniques and
variable/value ordering heuristics:

"* Consistency Enforcing (Checking) Techniques: These techniques are meant to prune

the search space by eliminating local inconsistencies that cannot participate in a

global solution [20]. This is done by inferring new constraints and adding them to

the current problem formulation. If, during this process, the domain of a variable
becomes empty, a deadend situation has been identified.

"* VariablelValue Ordering Heuristics: These heuristics are concerned with the order

in which variables are instantiated and values assigned to each variable. As

discussed in the remainder of this paper, these heuristics can have a great impact on

search efficiency.

Concretely, for job shop scheduling CSPs, the search procedure starts in a search state in which
no operation has been scheduled yet, and proceeds by scheduling one operation (i.e. aggregate
variable) at a time:

1. If all operations have been scheduled then stop, else go on to 2;

2. Apply the consistency enforcing procedure;

3. If a deadend is detected then backtrack (i.e. select an alternative if there is one left

and go back to 1, else stop and report that the problem is infeasible), else go on to

step 4;

9

4. Select the next operation to be scheduled (so-called variable ordering heuristic);

5. Select a promising reservation for that operation (so-called value ordering

heuristic)

6. Create a new search state by adding the new reservation assignment to the current

partial schedule. Go back to 1.

The results reported in this study were obtained using a simple chronological backtracking

scheme.

Clearly there is a tradeoff between the time spent enforcing consistency in each search state and
the actual savings achieved in search time. As with other CSPs, on the average, it is not a good
idea to seek very high levels of consistency in a search state [22, 15, 28, 20, 6, 7, 25). However,
while for many CSPs simply achieving arc-consistency [44, 19] in a forward checking

[15, 25] fashion appears to be optimal, job shop scheduling generally entails slightly higher
levels of consistency with respect to precedence constraints6 . Indeed, it is possible to achieve

complete arc consistency with respect to precedence constraints in O(a) time, where a is the

number of precedence constraints in the problem [41]. As in PERT/CPM [16], this is done using
a longest path algorithm that takes advantage of the acyclicity of the precedence graph to

produce an efficient order in which to update pairs of earliest/latest possible start times for each
unscheduled operation 7. It turns out that this method actually guarantees decomposability
8 [5, 8). Hence, in the absence of capacity constraints (e.g. problems in which no two operations

require the same resource), updating pairs of earliest/latest possible start times for each
unscheduled operation in each search state is sufficient to guarantee backtrack-free search.

Enforcing consistency with respect to capacity constraints appears to be more difficult due to the

disjunctive nature of these constraints. For these constraints, a forward checking type ec
consistency enforcement is carried out with respect to capacity constraints [18]. In other words,

6A binar" constraint (Le. "arc") restricting two variables is said to be arc consistent when the sets of remaining
possible v. .zs of both variables are such that any value in the set of one variable is supported by/compatible with at
least one value in the set of the other. Achieving arc consistency with respect to a binary constraint requires pruning
all values that do not meet this condition. In general, for two variables with k possible values each, this requires at
most O(k2) consistency checks. A search state is said to be totally arc-consistent if all its constraints have been
made arc consistent. Forward checking is a form of partial arc-consistency [21, 151. It only requires achieving
arc-consistency with respect to binary constraints connecting non-instantiated variables to instantiated ones.
Forward checking does not attempt to achieve arc-consistency between non-instantiated variables.

7See also [40] for an incremental version of this procedure, as new operations are scheduled.

8A constraint network is said to be decomposable iff every assignment of values to any subset of K variables that
satisfies all the constraints among these K variables can be extended by an assignment of a value to any variable not
in the subset, in such a way that the resulting set of K+ 1 assignments satisfies all the constraints among the K+ 1
variables [8]. Decomposability is sufficient to ensure backtrack-free search.

10

whenever a resource is allocated to an operation over some time interval, this procedure marks
that time interval as unavailable to all other operations requiring that same resource.
Additionally, in order to rapidly catch some capacity constraint violations, it was found useful to
add a set of redundant capacity constraints to the problem formulation. Short of enforcing full
arc-consistency, these constraints, which are described in Appendix A, efficiently enforce a
higher level of arc-consistency than simple forward checking.

Because,it is only possible to efficiently enforce partial consistency with respect to capacity
constraints, backtracking will sometimes occur. In other words, the scheduling procedure will
sometimes reach a search state, in which several unscheduled operations competing for a
resource appear to each have some possible reservations left, while the total capacity available
on the resource is actually insufficient to accommodate all these operations together. Notice,
however, that because consistency enforcement with respect to precedence constraints is
sufficient to guarantee decomposability (with respect to these conrtraints), backtracking can only
occur as the result of capacity constraint violations.

Because it is impossible to efficiently guarantee backtrack-free search for job shop CSPs,
variable and value ordering heuristics are generally critical in determining the actual complexity
of the search procedure. The next two sections examine popular variable and value ordering
heuristics developed for generic CSPs as well as more specialized heuristics and study their
applicability to HCSPs such as job shop scheduling.

I1

4 Shortcomings of Popular Variable Ordering Heuristics
A powerful way to reduce the average complexity of backtrack search consists in judiciously
selecting the order in which variables are instantiated. The intuition is that, by instantiating
difficult variables first, backtrack search will generally avoid building partial solutions that it
will not be able to complete later on. This reduces the chances (i.e. the frequency) of
backtracking. Instantiating difficult variables first can also help reduce the amount of
backtracking when the system is in a deadend state that is not immediately detected by its
consistency checking mechanism. Indeed, by instantiating difficult variables, the system moves
to more constrained deadend states that are easier to detect. This reduces the time the system
wastes attempting to complete partial solutions that cannot be completed.

Two types of variable okdering heuristics are usually distinguished:

1. Fixed variuile ordering heuristics: A unique variable ordering is determined

prior to starting the search and used in each branch of the search tree;

2. Dynamic variable ordering heuristics: The ordering is dynamically revised in

each search state in order to account for earlier assignments. Different branches in
the search tree generally entail different variable orderings.

Clearly fixed variable orderings require less computation since they are determined once and for
all. On the other hand, dynamic variable ordering heuristics are potentially more powerful
because of their ability to identify difficult variables within specific search states rather than for
the overall search tree. Many CSP studies performed on simple problems such as N-queens or on
moderate-size problems have found that dynamic variable ordering heuristics are too expensive
(e.g. [7]). There are however more difficult problems, for which dynamic variable ordering
heuristics can be expected to achieve exponential savings in the average amount of search
required to come up with a solution [32]. For these more difficult problems, it has often been
suggested that a simple heuristic known as the Dynamic Search Rearrangement heuristic
(DSR) would generally be sufficient [3, 32, 7, 13]. In each search state, DSR looks for the
variable with the smallest number of remaining values, and selects this variable to be instantiated
next. DSR has often been used as a benchmark to det mine whether it is worthwhile using a
dynamic variable ordering heuristic for a given class of problems. The experiments presented at
the end of this paper clearly show that job shop scheduling belongs to the class of more difficult
problems for which a dynamic variable ordering is justified. Furthermore these experiments
show that even DSR is often insufficient to solve realistic job shop CSPs.

The scheduling problem introduced in the previous section helps understand the shortcomings of
DSR. Figure 3 depicts the problem after the application of the consistency enforcing procedure
described in section 3.

According to DSR, there are six operations that are equally good candidates to be assigned a

12

, 201 R, 02 R2%F "

[O,qi [39][612

CI ,, capct contan

instnce,[0,6o rpeensalstr)ie betwee tie]

Ci C S

and ime6, a alow aciby th imornularitnaml

[0,{0,l,2,3,4,3,12)

reseration First re~ 3: The sae job andp CSP aneethes cosistoer abeiong.l pea qal

difficult to DSR, as they each have seven possible start times left. The other four operations in
the problem appear easier as they each have ten possible start times left. It is easy to see that
some of the six operations that appear equally difficult to DSR are in fact more difficult to
schedule than others. Consider operations O2 and O•: both operations require resource R2 , which

is required by a total of four operations. Moreover, in three cases out of four, the operation
requiring resource R 2 is the last operation in its job. This high contention for resource R 2

indicates that O• and O• will probably be difficult to schedule. On the other hand, an operation
like 0O1 competes only with one other operation for resource R3, namely operation O•. Moreover,

the fact that O• is the first operation in job jl, while O• is the last operation in job J3, suggests

that these two operations are not very likely to compete with each other. Operations O• and O•
can be expected to be easier to schedule than operations O• and 0•. Unfortunately DSR is not

able to account for these observations. This is because DSR simply counts the number of
remaining values of each variable, but fails to estimate the likelihood that these values remain

13

available later on. Clearly start times of operations competing for highly contended resources are
more likely to become unavailable than those of other operations.

In this example, the bottleneck resource R2 also corresponds to the largest clique of capacity
constraints. Therefore, a variable ordering heuristic that identifies difficult variables (i.e. nodes
in the constraint graph) as those with many incident constraints might actually provide better
advice than DSR. Several such variable ordering heuristics have been proposed in the literature.
These heuristics are generally fixed variable ordering heuristics, unless new constraints are
added to the problem as it is solved. One such heuristic is the Minimum Width (MW) heuristic
[11, 7]. MW "orders the variables from last to first by selecting, at each stage, a node in the
constraint graph which has a minimal degree9 in the graph remaining after deleting from the
graph all nodes which have been selected already" [7]. A variation of this heuristic known as the
Minimum Degree (MD) heuristic simply ranks variables according to their degree in the initial
constraint graph [7]. In the example depicted in Figure 2, MD would select 01 to be scheduled
first. There are also MW orderings starting with that operation. In general, scheduling problems
are not that simple, and fixed variable ordering heuristics like MD or MW do not provide very
good advice either. This is best illustrated by slightly modifying the scheduling problem
depicted in Figure 2.
Suppose, for instance, that we change the problem and introduce a fifth resource, say R5.
Suppose also that we allow any of the operations requiring R1 or R3 in the original problem to
use R5 as an alternative resource. We now have:

* 01 =a21 =Q'21= {R 1 ,R 5)

* '4I--; - (R 3 ,R 5 }

The two cliques of capacity constraints corresponding to R1 and R3 are now subsumed by a
larger clique of capacity constraints10 involving five operations: 01, 01, 0O, 03, and 0' (Figure
4). Due to the additional capacity constraints resulting from the introduction of R5, there are
now MW orderings and MC orderings starting with some of these five operations. In fact the
addition of R5 has significantly loosened the capacity constraints participating in the new clique,
and the operations connected by these constraints are even easier to schedule than before. Failure
of MW and MC to identify that these operations are actually easy to schedule is due to the
inability of these heuristics to account for constraint tightness, namely the difficulty of

9Tbe degree of a node is the number of constraints incident to that node.

incapacity constraints between operations belonging to the same job are subsumed by precedence constraints in
3 3 3 3

that job. For instance, a capacity constraint between 03 and 02, which would require that either 03 precede 02 or33

02 precede O , if both operations use R5. This constraint is subsumed by the precedence constraint between the two
3 3operations, which requires that 01 always pweee 02.

14

j 01 P,

I I , 03P , I .

CI3

ceC
PS

C, capacity constraint

P precedence constraint

Figure 4: A new resource R 5 is added to the problem.
R 1,5 stands for R 1 or R5 . R3,5 stands for R3 or R5.

satisfying a specific constraint [24, 10].11.

Another problem with variable ordering heuristics described in the CSP literature comes from
the fact that they treat all problem constraints uniformly. In many real-life CSPs, different types

of constraints entail different levels of consistency checking. This in turn determines the types of

conflicts that can arise during search, and affects the effectiveness of different variable ordering

heuristics. This is the case in job shop scheduling, where, as explained in section 3, consistency

enforcing techniques take advantage of particular algebraic properties of precedence constraints

to efficiently ensure that backtracking only occurs as a result of capacity constraint violations.

Consequently, the criticality of an operation is uniquely a function of the difficulty of finding a
reservation for that operation that will not violate some capacity const'aints. This observation

can be exploited to design more effective variable ordering heuristics.

"11Another example of a variable ordering heuristic that does not account for constraint tightness is the
Max-cardinality search order which arbitrarily selects the first variable to be instantiated, and then at each stage
picks the variable connected to the largest number of already instantiated variables [21, 7]. This heuristic can also be
seen as a fixed variation of DSR.

15

A specialized variable ordering heuristic that takes advantage of this observation is the one
developed by Keng and Yun [17], though its authors apparently failed to relate the strength of
their heuristic to this observation. Keng and Yun suggested a generalization of DSR in which
each operation reservation (i.e. each value) is assigned a survivability measure reflecting its
chance of satisfying the capacity constraints (i.e. its chance of surviving the competition with
other operations for the possession of a resource). The operation to be scheduled next is the one
with the smallest global survivability, as determined by the sum of the survivabilities of each of
its (remaining) possible reservations. Experiments presented at the end of this paper, show that
this heuristic performs better than all the generic heuristics described above. They also show that
this heuristic is quite expensive, as it requires inspecting all the remaining reservations (i.e.
values) of all unscheduled operations1 2. In scheduling problems with several hundred
operations, each with several hundred possible start times and several possible resources, this
heuristic may not be cost effective. More efficient heuristics can be obtained by focusing on one
or a small number of cliques of tight capacity constraints, and selecting the operation most likely
to violate a constraint in these cliques. A heuristic based on this idea is described in Section 5,
which runs faster than Keng and Yun's heuristic while achieving an even higher search
efficiency.

12Notice also that this heuristic may still identify operations with just a few remaining possible reservations as
being critical while in fact these reservations may not be conflicting with the reservations of any other operation.
This could be the case if, for instance, operation 01 in the example in Figure 2 had only a small number of possible
start times. In fact, the consistency enforcing technique ensures that backtracking will never be caused by this
operation, since there is no capacity constraint incident to it.

16

5 Shortcomings of Popular Value Ordering Heuristics
Another powerful way to reduce the average complexity of backtrack search relies on judiciously
selecting the order in which value assignments are tried for a variable. A good value ordering
heuristic to minimize backtracking consists in assigning so-called least constraining values. A
least constraining value is one that is expected to participate in many solutions to the problem (or
to the subproblem defined by the current search state). By first trying least constraining values,
the system will generally maximize the number of values left to variables that still need to be
instantiated, and hence it it will avoid building partial solutions that cannot be completed.

Attempting to exactly compute the number of global solutions in which a given assignment (i.e.
value) participates would be futile as it would require finding all solutions to the problem.
Instead Dechter and Pearl developed a heuristic, called ABT 13, that relies on tree-like relaxations
of the problem to approximate the goodness of a value. A tree-like relaxation of a CSP is one
whose constraint graph is a tree that spans some or all the nodes (i.e. variables) of the original
CSP. Within such relaxations, the number of solutions in which a value participates can be
efficiently computed in 0(nk2) steps, where n is the number of variables in the CSP, and k the
maximum number of possible values of a variable. The intuition is that, if one can find a tree-
like relaxation that is close enough to the original CSP, a good value for the relaxation should
also be a good value for the original CSP. One way to obtain tight tree-like relaxations is by
associating with each (binary) constraint C in the original constraint graph a weight w(C) equal
to the satisfiability of that constraint (i.e. the number of pairs of values that satisfy the
constraint). A tight tree-like relaxation corresponds to a Minimum Spanning Tree (MST) in the
resulting network.

While ABT has performed particularly well on some CSPs, it does not appear appropriate for
CSPs such as job shop scheduling. Indeed, even for a fixed variable ordering, the heuristic
generally requires the computation of a fixed MST for each of the n levels in the search tree.
This amounts to n MST computations, each of which typically requires 0(n2) elementary
computations [42] (hence a total of 0(n3) elementary computations). The experimental results
presented at the end of this paper indicate that a fixed variable ordering is generally not enough
to efficiently solve job shop scheduling problems. Under these conditions, it might even be
necessary to identify new tree-like relaxations in each search state 14 . These computations may
become quite expensive for large CSPs. There is however a more important problem with this
heuristic, whether using minimum spanning tree relaxations or not: there is no guarantee that
there even exists a tight enough tree-like relaxation of the CSP, namely a tree-like relaxation that

13ABT stands for Advised Backtracking.

14This would also iquite updating the weights of each constraint in each search state.

17

will provide sufficiently good advice to guide search15 . This is most likely to be the case with
job shop scheduling problems, as explained below with an example.
Consider constraint P1 in the scheduling problem depicted in Figure 3. P1 is a precedence

constraint between operation O1 and operation O1. The set of start time pairs (st, ,st4) that satisfy
constraint P, is:

In order to identify a tight tree-like relaxation, P1 is assigned a weight, w(P1), equal to the
cardinality of that set, namely w(P 1)=7+6+5+4+3+2+l=28. Similar computations can be
performed to compute the weights of other constraints. These weights are as follows:

"* w(P 1)--w(P 2)=w(P4)=w(P5)=28

"* w(P3)--w(P 6)=55

"* w(C1)=38, w(C 2)=29, w(C 3)=38

"* w(C4)=43

"* w(C5)=w(C6)=38, w(C 7)=29, w(C8)=56, w(C9)=w(C10)=38

Figure 5 shows an MST relaxation of the scheduling problem obtained using these weights. It
appears that the MST relaxation includes 10 out of the 16 constraints present in the original CSP.
The loss of information initially contained in the cliques of capacity constraints is even more
dramatic. Only 2 out of the 6 constraints in the clique corresponding to R2 have been preserved.
This is not an accident. In general a resource required by M operations will result in a clique of
(m2) capacity constraints. At most M-1 of these capacity constraints can be preserved in any

tree-like relaxation of the problem. Under these conditions, we should not be surprised if the
advice provided by ABT for job shop CSPs is not very effective. Suppose for instance that the
system selects O to be instantiated first 16. Using the MST relaxation represented in Figure 5,
ABT would recommend assigning start time 4 to this operation. A careful examination of the
scheduling problem reveals however that there is no feasible schedule with O starting at 4.
Indeed it appears that ff O were to start at time 4, the three other operations requiring resource

15'lne experiments reported in [6] seemed to indicate the opposite. In these experiments, it appeared that often the

advice provided by ABT was too expensive and too accurate. Instead advice provided by looser relaxations ended
up being more cost-effective. However, these results were obtained on rather small problems with a relatively high
density of solutions.

161t should now be clear that this is a good choice, since this operation has only seven possible start times and
requires resource R 2, the main bottleneck of the problem.

18

P,,
10,6) 13.9) 16,121

2 o.12 [2.12]

CI capacity constraint

Pi " precedence constraint

Figure 5: An MST relaxation of the scheduling problem.

R2 would all have to be scheduled between time 7 and time 15. In other words, there would be 8
time units left to fit 3 operations that each have a duration of 3 time units. This is clearly

impossible.

Keng and Yun have developed a specialized value ordering heuristic that can deal more

effectively with cliques of capacity constraints [17]. This heuristic first estimates the overall
need for each resource in function of time. Based on these estimates, operation reservations are
ranked according to how well they are expected to prevent contention with the resource

requirements of other operations. As the results reported later in this paper indicate, Keng and

Yun's value ordering heuristic generally outperforms ABT. However their heuristic omits to
leave enough room to other operations within the same job so that they can be assigned least

constraining reservations as well. In other words, Keng and Yun's heuristic only accounts for the

capacity constraints incident to the current operation, but fails to account for capacity constraints

at other operations connected by precedence constraints to the current operation.

The next section describes a probabilistic model of the search space that better accounts for the

high connectivity of constraint graphs typically found in job shop scheduling, and for the

constraint interactions induced by these graphs. New variable and value ordering heuristics are

defined within this framework that attempt to remedy the shortcomings identified above.

19

6 New Variable and Value Ordering Heuristics

6.1 Underlying Assumptions
Rigorously speaking, good variable and value ordering heuristics are heuristics that minimize the
time required for search to complete (i.e. either with a solution, if one exists, or with the answer
that the problem is overconstrained). If the problem is infeasible, search time is independent of
the value ordering heuristic (except for the time spent by the system ordering values according to
the heuristic): once a variable has been selected, the system will have to try each one of its
remaining values before being able to conclude that the current partial solution cannot be
completed. In general variable and value ordering heuristics affect the number of search states
that are explored, the average amount of time spent enforcing consistency in each search state,
and the amount of time spent by the system ordering variables and values according to these
heuristics. Variable and value ordering heuristics may even affect each other's performance.
The complexity of these interactions precludes the design of heuristics that directly minimize the
expected search time. One can however attempt to design heuristics that aim at reducing some of
the factors identified above. The approach taken in this section aims at developing heuristics that
efficiently reduce the expected number of search states explored by the system. Assuming that
the time spent by the system enforcing consistency is mainly a function of the number of
operations that have already been scheduled (i.e. the depth in the search tree) rather than a
function of the specific operations that have been scheduled, such heuristics are expected to
effectively reduce search time as well.

In this section, it is postulated that a critical variable is one that is expected to cause
backtracking, namely one whose remaining possible values are expected to conflict with the
remaining possible values of other variables. Under a set of simplifying independence
assumptions, Haralic" and Elliott have shown that such a measure of criticality will minimize the
expected length of branches in the search tree, and hence the total number of search states that
need to be visited to come up with a solution [15]17. It is also postulated that a good value is one
that is expected to participate in many solutions.

In the next subsection, a probabilistic model of the search space is introduced that can be used to
approximate variable criticality and value goodness.

7See [15) pp. 307-312. At the end of their proof, the authors make the unnecessary assumption that each variable
value is equally likely to become unavailable. Under this assumption, the variable with what they call the smallest
success probability (or equivalently the variable most likely to create backtracking) is the one with the smallest
number of remaining values. The authors exploit this result to motivate their use of the Dynamic Search
Rearrangement heuristic. When this last assumption is omitted, Haralick and Elliott's proof shows that (under
several other simplifying assumptions made earlier in their proof) choosing the variable most likely to create
backtracking will minimize the expected length of each branch in the search tree.

20

6.2 A Probabilistic Model of the Search Space
Critical variables are those expected to cause backtracking. In other words, a critical variable is
one whose values are expected to conflict with the values of other variables. In order to
approximate variable criticality, a probabilistic framework is described which accounts for the
chances that a given value will be assigned to a variable (also a measure of the reliance of a
variable on the availability of this value), and the chances that values assigned to different
variables conflict with each other (so called value contention measures). By only accounting for
those conflicts that will not be prevented by the consistency enforcing procedure, highly
effective measures of value contention can be obtained for job shop scheduling CSPs. These
measures are then used to determine which variable (i.e. operation) to instantiate next and which
value (i.e. reservation) to try first for that variable.

The job shop scheduling consistency enforcing procedure described in section 3 ensures that, in
any given search state, the only conflicts that can still occur are capacity constraint violations
between currently unscheduled operations. Accordingly, a critical operation in this search
procedure, is one whose resource requirements are likely to conflict with the resource
requirements of other unscheduled operations. In general, the chances that an operation's
resource requirements conflict with those of other unscheduled operations is determined by the
number of operations competing for the same reservations and the reliance of each operation on
the availability of each one of its possible reservations (i.e. values). Typically, operations with
few possible reservations left will heavily rely on the availability of any one of their remaining
reservations, whereas operations with a handful of remaining reservations will rely much less on
any one of these reservations.

Accordingly, a probabilistic model is assumed in which each reservation p that remains possible
for an unscheduled operation O0 is assigned a subjective probability ei(p) to be allocated to that
operation. Because, a priori, there is no reason to believe that one reservation is more likely to
be selected than another, each operation reservation is assigned an equal probability to be
selected. Clearly, in any schedule, each operation will be assigned only one reservation. Hence,
the reservation distributions are chosen to be of the form:

NBRi

where NBRIi is the number of remaining reservations of O0 in the current search state. This
distribution mirrors our intuition that an operation with many possible reservations does not
heavily rely on any single one of its remaining reservations, and hence the probability of any
single one of these reservations to be selected is rather low. On the other hand, operations with
few remaining possible reservations are more likely to have to use any one of these reservations.
Using these subjective reservation distributions, it is possible to estimate the reliance of an
operation 01 on the availability of a resource Rk e RES at time z as the probability that the
reservation allocated to this operation will require that resource at that time. This probability
will be referred to as the individual demand of operation 01 for resource Rk at time z. It will be

21

denoted D'(Rk,T). It can be computed as the sum of the probabilities &i(p) of all remaining
reservations p of operation O that require resource Rk at time -t. Finally, by adding the
individual demands of all unscheduled operations requiring resource Rk, an aggregate demand
profile, D oggr(,), is obtained that indicates contention between unscheduled operations for
resource Rk as a function of time. Alternatively, one can postulate a stochastic mechanism that
completes the current partial schedule (in the current search state) by randomly assigning a
reservation to each unscheduled operation O according to its &i distribution. D'(Rk,) is then

the probability that the stochastic mechanism assigns 01 a reservation that requires Rk at time ¶,

and D agr(t) is the expected number of reservations made by the stochastic mechanism for Rk at
time -T (or the expected number of operations requiring that resource at that time).

Similar demand profiles are built by Keng and Yun's variable and value ordering heuristics [17].
The heuristics that will be presented differ from those of Keng and Yun in the way they exploit
these demand profiles' 8. Earlier, Muscettola and Smith also proposed techniques to build
probabilistic demand profiles, based on a predefined variable ordering [23].

The following illustrates the construction of these profiles for the example introduced in Figure
2.

Consider operation 01 in the initial search state depicted in Figure 3. After enforcing
consistency, this operation has 7 possible reservations (i.e. start times st2 = 3,4,... ,9), each with a
subjective probability al(st4)=1 to be selected. On the other hand, 02 has 10 possible start times:

2st2=3,4,...,12. Therefore the subjective probability that any one of these 10 possible start
times will be selected is , _(st2)=L. The individual demand of an operation 01 for resource R2 at

some time t can be computed by simply adding the probability of each reservation that would
require using resource R2 at time r, i.e. by adding the probabilities of all reservations starting

between t and t-dul. For instance:

t-du2 <,r:5 t

In particular D (R 2 ,t)=0 for all times t such that 3 < t < 4. This is because there is only one

possible start time that would cause operation O to use resource R at any of these times,
namely st = 3. Between time 4 and time 5, things are different as there are two possible start

times that would cause 02to use R2over that time interval:st2=3 and st2=4. The demand of 021
2

for resource R2 between time 4 and time 5 is 7. Similar computations can be performed for the
other time intervals over which O may require resource R2. Figure 6 shows the individual

18Tbe work presented here was performed concurrently to that of Keng and Yun [33, 34, 10). Notice that the
interpretation given by Keng and Yun for their demand profiles is not a probabilistic one.

22

D1(T): Individual Demand of O for R2

0.50
0.251

0 12 3456789101112 13 1415

time

D2(t): Individual Dew .nd of 02 for •2

So~o ; 12 3 7 8 9 0121'o,, 3 1415s

time

D2('): Individual Demand cf or R2

V o-o

0.01•

0 1 2 3456789 101112131415

time

D3s('): Aggregate Demand for R2

"• 1.50

3 2_

0.750.50 -

0.0 1 2 3 4 5 6 7 8 9101112131415

time

Figure 6: Building R2's aggregate demand profile in the initial search state.

demands of all four operations requiring resource R2 , as well as the aggregate demand for that

resource obtained by adding the four individual demands over time. As expected, the two
operations with only seven possible start times (namely O• and 033) have more compact

individual demands than the two operations with ten possible start nines (namely O• and 042).

Notice also, that, because of the normalization of the all(p) distributions, the total individual

demand of an operation with only one possible resource (like all the operations in this example)

23

is always equal to the duration of that operation. This total demand is simply spread differently
over time, depending on the number of start times still available to the operation.

D apr(t): Aggregate Demand for R 1
1.5o

~1M.

a 0.75

, 0 ~o i3. . , , ,
time

lo 0 1 2 3 4 5 6 7 8 9 10 11 121i31415

DOTr'(): Aggregate Demand for R2

*1.004

a 0.751

* 0." 0

p0.251

S 0 1 23 4 4 5 7 10 1o11i2131415
time

1.-W D'.s9r(t): Aggregate Demand for R3

SI.MES3]
*1.004'
a0.751-

0.70
0 1.00.

0 1 2345 6 78 101112 13 14 15
time

Fiur D7Agr'(g): Aggregate Demand for Re

i 0.75.. ..-

0.05

T 0 1i i i35 7 0 0 121i314 15

time

Figure 7: Aggregate demands in the initial search state for each of the four resources.

Figure 7 displays the aggregate demands for the four resources of the example. As anticipated,
resource R2 appears to be the most contended for.

In general, building aggregate demand profiles requires looking at each remaining reservation of
each unscheduled operation. Hence, in each search state, the worst-case complexity of the

24

procedure is O (Nk), where N is the number of unscheduled operations and k the number of
remaining reservations of an unscheduled operation. In practice, the sets of remaining
reservations of many operations do not change from one search state to another and it is more
efficient to only update the individual demands of those operations whose sets have shrunk. The
old individual demands of operations whose sets of possible reservations have shrunk are
subtracted from the aggregate demand profiles, and the new individual demands are added
instead. It is possible to perform similar updates when the system backtracks.

6.3 A Variable Ordering Heuristic Based on Measures of Resource Contention
The aggregate demand for a resource over a time interval is a measure of contention between
unscheduled operations for that resource/time interval. In general, the resource/time interval with
the highest demand (i.e. the one that is the most contended for) can be expected to be the one
where capacity constraints are most likely to be violatedl 9 . Accordingly, the operation with the
highest contribution to the demand for the most contended-for resource/time interval is
considered the most likely to violate a capacity constraint, since it is the one that relies most on
the availability of that highly contended interval.

Several variations of this variable ordering heuristic have been implemented. The simplest and
often most effective one inspects each resource's aggregate demand profile using time intervals
of duration equal to the average duration of the operations requiring that resource. The heuristic
then picks the operation with the largest contribution (i.e. the largest individual demand) to the
demand for the most contended of these time intervals. This is the variable ordering heuristic
used in the experiments reported at the end of this paper. It will be referred to as ORR, which
stands for "Operation Resource Reliance" heuristic.

Figure 7 displays the demand profiles for R 1, R2 , R 3, and R4 , the four resources of the problem
introduced in Section 3.2. The largest demand peak identified by ORR is that for resource R2
between time 8 and 11, which corresponds precisely to the clique of tight capacity constraints
identified earlier. Figure 8 indicates that the operation with the largest contribution to that
demand is 03. This is no coincidence: 03 competes for the most contended resource and belongs
to the group of six operations that have only seven possible start times left after consistency
checking. Notice that, in this example, there are actually two intervals in the demand profile of
R2 that qualify as most contended for. [7,10[and [8,11 [. Had the scheduler chosen [7,10[instead

of [8,11 [, it would have selected 01 as the operation to be scheduled next. In fact, 03 and 0O

appear equally critical in this example.

The ORR heuristic requires looking successively at each resource, and each time interval in that
resource's calendar, in order to identify the most contended interval. If there are m resources and
if the scheduling horizon is H, this requires O(Hm) elementary computations.

19T•ese tight capacity constraints are those connecting operations that contribute to the demand for the highly
contended resource/time interval.

25

D'9(9r): Aggregate Demand for R2

S0.5

OD.o contenton

p025 _ _ _ _ __ _ _ _ _

M 0 1 2 3 4 5 6 7 9 9 10 11 12 13 14 15

time

D2('): Individual Demand of O for R2
oM

~0.2S
* 0 .2 5

7 7
0. 1 2 3 4 5 6 7 5 9 10 11 12 13 14 15

D•(r): Individual Demand of O• for I?2

b•00 0 1 2 345$6 758 910 11 12 IS 14 15

time

D2(r): Individual Demand of O0 for R2

1 2 4 5 6 7 8 9 10w 11 12 13 1415$

0 (2

D3,(): Individual Demand of O for R2

02S

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

time

Figure 8: ORR Heuristic: the most critical operation is the one that relies

most on the most contended resource/time interval.

6.4 A Value Ordering Heuristic Avoiding Resource Contention
In Section 4, ABT was found to have two major weaknesses, when applied to job shop
scheduling. The first weakness had to do with the computational overhead involved in the
determination of tight tree-like relaxations of the problem, while the second one lay in the
inability of tree-like relaxations to properly account for cliques of capacity constraints. In
contrast, a value ordering heuristic is now described that attempts to avoid resource contention
while relying on predetermined tree-like relaxations. The predetermined tree-like relaxations are

26

comprised of some or all unscheduled operations in the job to which the current critical operation
(i.e. the operation to be scheduled next) belongs, along with all precedence constraints between
these operations. However, rather than simply counting the number of solutions to the relaxation
in which a given reservation assignment participates, the value ordering heuristic also accounts
for the probability that a solution to the relaxation satisfies the cliques of capacity constraints,
thereby making up for the typical lack of information contained in the predetermined relaxation.
The probability that a solution (to the relaxation) satisfies the cliques of capacity constraints (i.e.
"survives" resource contention) is estimated using the same demand profiles that were
constructed for the variable ordering heuristic.

For job shop CSPs with tree-like process routings, the tree-like relaxation adopted by the
heuristic is comprised of all the unscheduled operations connected by precedence constraints to
the current critical operation, along with these precedence constraints. Each candidate
reservation assignment (for the critical operation) is ranked according to the number of solutions
to the relaxation with which it is compatible (i.e. the number of compatible schedules for the job
to which the critical operation belongs) that are expected to satisfy capacity constraints (i.e.
"survive" resource contention). The reservation compatible with the largest number of such
schedules is the one selected by the heuristic. The following describes the approximations used
by the value ordering heuristic to compute the probability that a reservation "survives" resource
contention and the probability that a job schedule survives resource contention. A dynamic
programming technique to efficiently count the number of schedules compatible with a given
reservation and expected to "survive" contention is presented in Appendix B. This technique is
an adaptation of a procedure developed by Dechter and Pearl for the ABT heuristic [6] (see also
[31]). It is shown that this technique can be further speeded up by taking advantage of the

linearity of precedence constraints.

6.4.1 Estimating the Probability that a Reservation Survives Contention=~~~~~~tR =-- I R, .. >oeo t eann
Let 01 be an unscheduled operation and p=<sti= ,l R1 =r, = . one of its remaining

reservations. The probability that assigning reservation p to operation 01 will not conflict with
the resource requirements of other operations will be referred to as the "survivability" of
reservation p (for 01). It will be denoted survi((p). The survivability of assigning reservation p to
0 is approximated by the product of the probability that each one of the resources required by
that reservation will be available between t and t+du (independence assumption):

survl(P) = r I avai4(rý,k,t +du) (1)
i 1 2"rijk 'E {Ilk I ri2k2.

where avai(r t , tt+du') stands for the probability that resource r1 will not be required by any

other operation between t and t+dul (also the probability that assigning this resource to 01 will
not create backtracking).

27

Let rk =R E RES. The probability avadi(rj, t , t+du) that resource rk,=Rp will not be required
by any other operation between t and t+du can be approximated using the aggregate demand
profile of resource RP (which is already maintained by the system for the ORR variable ordering
heuristic) and a vector np(r), which is also maintained by the system to keep track of the number
of (unscheduled) operations competing for RP as a function of time20. At any time
t <xr < t + dul , there are by definition np (,r)- 1 unscheduled operations competing with operation
O for resource Rp. The total demand of these other unscheduled operations for Rp at time r is
Da99r(,r-Dr ,T). Assuming that each of these np(z)-l other operations equally contributes
to this demand, the probability that none of these operations requires Rp at time r is given by:

Y-0--) (2)

It is tempting to approximate avaif(ri k,t,t+du'), i.e. the probability that ' =R will be
available to O between t and t + dul, as the product of the probabilities that Rp will be available
to 01 on each one of the du' time intervals between t and t+dul. In general, this approximation is
too pessimistic. It assumes that the operations competing with O have a duration equal to 1, i.e.
that any of these operations could require Rp over time interval [-T, t + 1 [without requiring it over
time interval [T + 1, - + 2[or over time interval [t- 1, cf. Instead, because operations competing
for Rp generally require several contiguous time intervals, a better approximation consists in
subdividing the calendar of that resource into buckets of duration AVG(du), where AVG(du) is
the average duration of the operations competing for r1=R . avadi(rt,tr+dui)) is then

approximated as the probability that O will be able to secure the A time buckets that it

requires to fit on the resource's calendar. Using Equation (2), this can be approximated as:
I

dut.Sagr, _VGnpC -, I) X A VG du
avai,(R p ,t,,, + dul,) AVG(1 - A n,r)-Dj(0)(3

where AVG(Dasgr(t)-DI(R i)) and AVG(np(t)-1) are respectively the average of
Rp P

OR, ()-Di(Rp,,) and the average of nrp(,)- 1 overtime interval [t,t+dul[.

Figure 9 depicts reservation survivabilities for the three operations in job j3, the job to which 303

belongs (the operation selected to be scheduled in the initial search state). The shape of these
survivability curves is easily interpreted by looking at Figures 3 and 7. Consider operation 03.

DW () is tbe aggregate demand for, at time T whereas nP(T) is the number of operations contributing to that
dem ad.

28

Reservation Survivabilities for 03

SI.e.

ASO.

gAD

am

Satei time
Reservation Survivabilities for 03

g0e 1! I IF t 7 8 9 10 11 12
start tOW

Reservation Survivabilities for 03

Om.4

0 1 2 a 4 5 6 7 58 ID II 12
stert tinl.

Figure 9: Survivability measures for the reservations of operations in job j3, the job
to which belongs O0, the current critical operation.

Figure 3 indicates that O only competes with one other operation for resource R 3, namely

operation O. Because operation O0 has a duration du3 = 3 and because the earliest possible start

time of operation 03 is st3 =6, operation O1 will never conflict with operation 01 if it is
scheduled at s?, =0, 1, 2, or 3. This is why the survivability of each of these start times is equal to

1. For start times s?=4,5, and 6 the probability of conflicting with a reservation assigned to 03

increases, as indicated in Figure 7 by the higher aggregate demand for resource R3 between time
6 and 9 (the only times where a conflict between the two operations is possible). Since the
probability of such a conflict remains fairly low (i.e. the conflicts involve only two operations
and only a small fraction of the reservations of these two operations conflict with each other), the
survivabilities of start times st3 =4,5, and 6 remain fairly close to 1 (though smaller than 1).

29

Operations 03 and 03 compete with more operations than 03. Accordingly, their reservation

survivabilities are smaller. The shape of the survivability curves of these two operations can be
interpreted using similar, though slightly more complex arguments.

6.4.2 Estimating the Probability that a Job Schedule Survives Contention
A good reservation is not only one that is likely to survive resource contention locally. A good
reservation should also leave enough room to other operations in the same job (i.e. same process
routing) so that they too can be allocated good reservations. Such good reservations can be
identified by estimating for each remaining reservation (of the operation to schedule) the
expected number of compatible job schedules that are likely to survive resource contention (in
short, the "expected number of survivable schedules"). When some operations in the job have
already been scheduled, rather than looking at the entire job, it is sufficient to look at the
relaxation comprised of all unscheduled operations that can be reached from the current (critical)
operation via precedence constraints without visiting a scheduled operation. The goodness of a
reservation is then determined by the expected number of survivable solutions to this relaxation.
Indeed unscheduled operations that are completely separated from the current (critical) operation
by already scheduled operations will not be affected by the reservation assigned to the current
operation.

In order to proceed, a few notations need to be defined:

* 01: the current critical operation (i.e. the operation selected to be scheduled next);

* p: one of 01's remaining reservations;

* RELAki g 01: the set of operations making up the relaxation used by the heuristic.
This set consists of 01 and the unscheduled operations that can be reached from 01
via precedence constraints without visiting a scheduled operation;

* goodf(p): the goodness of assigning p to 0, expressed as the expected number of
survivable solutions to the relaxation;

* compl(p): the set of solutions to the relaxation that are compatible with the

assignment of p to 0f;

* sol 6 comp,(p): a solution to the relaxation that is compatible with the assignment of
p to 01;

• p(O~lsot): the reservation assigned to an operation 0 e RELAX. in solution sol.

30

Assuming that the probability that a solution sol survives resource contention can be
approximated by the product of the probabilities that each reservation p (0 }sol) in sol survives

contention, the goodness of assigning p to 01 is:

good (p) = Ii SUri4(P(0 ISOO) (4)
Sol e coM,4p) Ok C RE..4Xi

This independence assumption is equivalent to omitting the interactions induced by precedence
constraints in other jobs. It generally appears to be sufficient, as suggested by the results
presented in the following section. Notice that, as a consequence of this assumption, the only
reservation survivabilities that need to be computed in each search state are those of operations
in REL4AX Q 01, i.e. a subset of the operations in the job to which the critical operation belongs.
Expression (4) can be rewritten to separate the survivability of reservation p from that of other
operations in RELXi:

good (P) = surv,(P) X Hsurv"(p(O Isol)) (5)
1 I R i 1

Solte •ompfP) Oke MIRFL IMOil

This can be further rewritten as:

good (p) = survi(p) x compsurvi(P) (6)

where compsurv, (p) is the number of solutions compatible with the assignment of p to 01 that are

expected to survive contention:

compsurvl(p) =- H s (o
Sol e cMPp) OkC- REL4f\(I o

Note that, in fact, compsurvf(p) is only a function of the start time stf allocated to O0 in
reservation p an can therefore be written as compsurv (t)

In tree-like process routings, it is possible to evaluate compsurvl(r) for all the possible start

times t of 0 in O(v 1 k) steps, where v1 : n, is the number of operations in relaxation RELAXi, and
k the maximum number of possible reservations of an operation. This is done using a dynamic
programming procedure described in Appendix B. This technique is an adaptation of a procedure
described in [6]21. For non-tree-like process plans, it should be possible to remove a small

21The complexity of Dechter's procedure is O(vtk2) for general tree-like CSPs. Here we have further reduced this
complexity to O(vt) by taking advantage of the linearity of precedence constraints. If the model was to allow for
other temporal constraints such as those described in [1], the complexity of the algorithm would be O(vk A2).

31

number of precedence constraints (e.g. precedence constraints that are not on a critical path) to
transform the process routing into a tree-like one, and use the resulting relaxation to compute
goodness measures.

Reservation Goodness for O3
10.00.

9 7.00.
8.00.

a7.00-
&6.00-

5.00.
4.00.

0.00.

0 1 2 3 4 5 6 7 8 9 10 11 12
star tinm

Figure 10: Value goodness for O expressed as the number of
compatible job schedules expected to survive resource contention.

In the example discussed earlier, the critical operation is O. Since no operation has been
scheduled yet, the relaxation used by the heuristic consists of all three operations in job j3. Figure
10 displays the goodness measures computed using (6). Start time s?3=6 for instance is only

compatible with one solution to the relaxation, namely a solution in which st =-3 and st? =0.

Therefore, the goodness of this start time is given by:
good(st'--6)=surv'(st•--) x surv (st4=3) x surv3(st,=6). On the other hand, start time sty=7 is
compatible with three solutions to the relaxation, one with s4t= 3 and st31=0, one with st,=4 and
st4=O, and one with st?=4 and st4= 1. The survivability of this start time was obtained by adding
the survivabilities of each of these three solutions.

Start time st4= 12 is the one compatible with the largest number of survivable solutions to the
relaxation. Hence this is the start time selected by the value ordering heuristic. By assigning this
start time to O, and iteratively using the variable and value ordering heuristics that were just
described, the search procedure easily completes the schedule without backtracking. This
problem is relatively easy, and is also solved without backtracking by Keng and Yun's heuristic.

No heuristic is perfect Although our value ordering heuristic recommends the right start time, a
careful analysis reveals for instance that its second best choice, namely st4= 11, is actually
infeasible. Notice however that, in the absence of backtracking, the scheduler does not need to
try the second best value recommended by the heuristic: it is enough for the first value to be

32

good.

6.4.3 Further Refinement
For some reservations p, compsurv(p) can become very large and have too much influence in
(6) compared to sur-v(p). Consider the following two reservations PI and P2:

" P1: compsurv (p1)= 1000 and surv (p1)= 0.5

"* P2: cOmpsurv(P 2)= 200 and survi(P2)= 1.0
Ideally, a good value ordering heuristic should recognize that reservation P2 is better than
reservation Pl, despite the fact that, according to Equation (6) goodi(pl)=500 is larger than
goo9 (P2) = 200. Indeed, in this example, it does not really matter whether compsurvl(p) equals
200 or 1000: in either case there will certainly be enough compatible schedules. Instead, the
factor that really matters here is the survivability of the reservation itself (i.e. locally). In the
experiments reported at the end of this paper, this problem was handled by filtering the number
of survivable solutions compatible with a reservation p, compsurvi(p). Instead of relying on
Equation (6), our value ordering heuristic measures reservation goodness according to the
following revised formula:

goodi(p) = survl(p) x MIN(Vr-1 ,compsurv'(p)) (7)

where MIN denotes the minimum function and (D is a parameter of the system that is empirically
adjusted. By using a filter of the form 4)vi-1, the heuristic attempts to ensure that, on the
average, each one of the v1- 1 other operations in the relaxation has 4) survivable reservations.

The resulting heuristic will be referred to as FSS, which stands for "Filtered Survivable
Schedules" (value ordering) heuristic22 .

22A more sophisticated way to filter compsurvi(p) would consist in filtering the number of compatible
reservations of each operation in the relaxation. This would ensure that each one of the operations in the relaxation
has enough compatible reservations. In general, because the critical operation is also the one in the relaxation whose
reservations are the least survivable, a single filter for all the other operations in the relaxation seems sufficient

33

7 Overall Complexity
In each search state, the worst-case complexity of the look-ahead analysis is O(max(Nk,Hm)),
where N is the number of unscheduled operations in the current search state, k the maximum
number of reservations left to an operation in that state, H the scheduling horizon, and m the
number of resources in the system. In general O(Nk) appears to be the dominant factor. In the
absence of backtracking (i.e. the number of search states generated by the system is equal to the
number of operations to be scheduled), the overall complexity of the approach is O(NOP2 k),
where NOP denotes the total number of operations to be scheduled. Experimentation with
problems of different sizes suggests that, in the absence of backtracking, this is the true
complexity of the approach. When backtracking occurs the overall complexity of the procedure
can be much higher, though it is not often the case.

34

8 Empirical Evaluation
This section reports the results of an experimental study comparing the ORR variable ordering
heuristic and FSS value ordering heuristic against the DSR (Dynamic Search Rearrangement)
variable heuristic (DSR) [3, 15, 32], the ABT (Advised Backtracking) value ordering [6], and the
combination of variable and value ordering heuristics developed by Keng and Yun [17] (and
referred to as SMU).

8.1 Design of the Test Data
A set of 60 scheduling problems was randomly generated, each with 5 resources and 10 jobs of 5
operations each (i.e. a total of 50 operations per problem). Each job had a linear process routing
specifying a sequence in which the job had to visit each one of the five resources. This sequence
was randomly generated for each job, except for bottleneck resources, which were each visited
after a fixed number of operations (in order to further increase resource contention).

Two parameters were adjusted to cover different scheduling conditions: a range parameter, RG,
controlled the distribution of job due dates and release dates, and a bottleneck parameter, BK,
controlled the number of major bottleneck resources. Six groups of ten problems were randomly
generated, by considering three different values of the range parameter and two different
bottleneck configurations. The value of a third parameter, which will be referred to as the slack
parameter, S, had to be adjusted in function of the first two in order to keep demand for
bottleneck resource(s) close to 100% over the major part of each problem23 .

The three parameters were set as follows:
Range Parameter (RG): this parameter controlled the release date and due date

distributions in each problem. Due dates were randomly drawn from a uniform
distribution (I +S)MU(1 -RG, 1), where U(a,b) represents a uniform probability
distribution between a and b, M is an estimate of the minimum makespan of the
problem, and S is the slack parameter, which is defined below in function of BK and

RG. The minimum makespan of the problem was estimated as

(n-1)dU-R +•,- -duR, where n is the number of jobs, m the number of
resources, Rbtmk the main bottleneck resource (or one of them if there are several)

and d U Ri denotes the average duration of the operations requiring resource Ri. This
estimate was first suggested in [29]. Similarly, release dates were randomly drawn
from a uniform distribution of the form: (1 + S) M U(O, RG). Three values of the

23If this parameter had been fixed while the other parameters varied, a large proportion of the problems would
have been either infeasible or trivial.

35

range parameter were used to generate problems24 : RG = 0.0,0.1, and 0.2.

"* Bottleneck Parameter (BK): In half of the problems, there was only one major
bottleneck (BK= 1), while in the other half there were two major bottlenecks
(BK=2).

"• Slack Parameter (S): For problems with 2 bottlenecks or jobs with different
release dates and due dates, the length of the problem was increased to (1 + S)M so
that most problems remained feasible. The slack parameter was empirically set as
S=0.1 x (BK- 1)+RG. At the same time, these values of the slack factor generally
maintained demand for the bottlenecks close to 100% over the major part of each
problem.

Finally, operation durations were randomly drawn from two different distributions, depending on
whether the operation required a bottleneck resource or not. Bottleneck operations had durations
randomly drawn from a uniform distribution U(8,16) whereas non-bottleneck operations had
their durations randomly drawn from a uniform distribition U(3,1 1). As a consequence,
operations in these problems had a bit over 100 possible start times (i.e. values) after applying
the consistency checking procedure to the initial search state.

8.2 Comparison Against Other Heuristics
Five combinations of variable and value ordering heuristics were compared:

* DSR & ABT: the Dynamic Search Rearrangement heuristic combined with the
Advised BackTracking [6] value ordering heuristic. The version of ABT used in
these experiments was one based on the same predetermined tree-like relaxation as
FSS, namely it used the process routing to which the current operation belonged.
This version of ABT was carefully implemented to run in O(vtk) steps in each

search state (where v, is the number of operations in the tree-like relaxation and k
the maximum number of remaining start times of an operation after consistency
checking). This was done using a procedure similar to the one implemented in
FSS25 .

24Due to the moderate size of the scheduling problems considered here, larger values of RG quickly tend to
produce less resource contention. This is also because the slack parameter S is increased when RG becomes larger,
in order to keep from generating infeasible problems.

25An implementation of ABT using MST relaxations would have been too slow to be competitive. It would have
required computing constraint satisfiabilities and identifying an MST relaxation in each search state. Additionally,
the time required to count the number of solutions to a general MST relaxation would have been O(vtk2).

36

"* DSR & FSS: the DSR heuristic combined with the Filtered Survivable Schedules

(FSS) value ordering heuristic (with 4= 2.5).

"* ORR & ABT: the Operation Resource Reliance (ORR) variable ordering heuristic

together with the ABT value ordering heuristic.

"* ORR & FSS: The ORR and FSS heuristics (with C) = 2.5) advocated in this paper.

"* SMU: The variable and value ordering heuristics developed by Keng and Yun at the

Southern Methodist University [17].

All combinations of variable and value ordering heuristics were run in a modular testbed in
which all common functions were shared (e.g. consistency enforcing module, backtracking
module, etc), and unnecessary functions were bypassed whenever possible (e.g. the construction
of demand profiles was bypassed in DSR&ABT). All functions were implemented with equal
care.

On each problem, search was stopped if it required more than 500 search states. The
performance of each combination of variable and value ordering heuristics was compared along
3 dimensions:

1. Search efficiency: the ratio of the number of operations to be scheduled over the
total number of search states that were explored. In the absence of backtracking,

only one search state is generated for each operation, and hence search efficiency is

equal to 1.

2. Number of experiments solved in less than 500 search states each.

3. Average CPU time per operation (in seconds): this is the average CPU time

required to successfully schedule an operation. If a solution was found, this time

was obtained by dividing the total CPU time required to solve the problem by the
number of operations to be scheduled. Otherwise, this time was approximated by
dividing the CPU time spent exploring 500 search states by the number of

operations. All CPU times were obtained on a DECstation 5000 running
Knowledge Craft on top of Allegro Common Lisp. Experimentation with an

earlier version of the system written in C suggests that the search procedure should

run 10 to 20 times faster in that language.
The results are summarized in Table 1. They indicate that DSR is generally not sufficient to
solve realistic job shop scheduling problems. Combined with ABT, this heuristic was only able

37

Performance of Five Heuristics

DSR DSR ORR SMU ORR
&ABT &FSS &ABT &FSS

Search 0.72 0.82 0.96 1.00 0.96
Efficiency (0.42) (0.38) (0.06) (0.00) (0.07)

RG=0.2 Nb. exp. solved 8 8 10 10 10
BK=i CPU seconds 10.48 7.60 1.57 3.76 1.77

(13.91) (10.30) (0.21) (0.28) (0.26)

Search 0.49 0.73 0.54 0.79 0.99
Efficiency (0.40) (0.43) (0.39) (0.38) (0.02)

RG=0.2 Nb. exp. solved 7 7 6 8 10
BK=2 CPU seconds 17.73 9.13 11.33 7.69 1.86

(16.38) (9.78) (11.83) (7.59) (0.15)

Search 0.60 0.82 0.79 0.64 0.78
Efficiency (0.44) (0.38) (0.36) (0.46) (0.36)

RG=0.1 Nb. exp. solved 7 8 9 6 8
BK=1 CPU seconds 9.47 5.32 5.80 9.29 6.63

(9.73) (4.98) (8.32) (7.81) (10.07)

Search 0.22 0.46 0.31 0.71 0.87
Efficiency (0.27) (0.46) (0.37) (0.42) (0.29)

RG=0.1 Nb. exp. solved 2 4 4 7 9
BK=2 CPU seconds 18.50 9.66 18.36 7.10 3.68

(9.20) (6.48) (11.50) (6.03) (5.62)

Search 0.28 0.32 0.53 0.46 0.73
Efficiency (0.38) (0.38) (0.44) (0.46) (0.43)

RG=0.0 Nb. exp. solved 2 3 6 4 7
BK=1 CPU seconds 17.14 13.18 16.64 12.52 9.50

(8.22) (7.58) (16.34) (7.99) (12.81)

Search 0.31 0.37 0.46 0.75 0.82
Efficiency (0.33) (0.43) (0.40) (0.41) (0.38)

RG=0.0 Nb. exp. solved 3 3 5 8 8
BK=2 CPU seconds 13.59 12.30 18.14 7.67 6.01

(10.28) (8.40) (16.60) (8.30) (8.88)

Search 0.44 0.58 0.60 0.72 0.86
Efficiency (0.41) (0.45) (0.41) (0.41) (0.31)

Overall Nb. exp. solved 29 33 40 43 52
Performance CPU seconds 14.49 9.53 11.97 8.00 4.91

(11.71) (8.23) (13.31) (7.13) (8.07)

Table 1: Comparison of 5 heuristics over 6 sets of 10 job shop problems.
Standard deviations appear between parentheses.

to solve 29 problems out of 60 in less than 500 search states each. Even when combined with

38

the FSS value ordering heuristic, DSR only achieved a search efficiency of 58%, and failed to
solve 27 problems out of 60 in less than 500 search states. These results not only suggest that job
shop scheduling requires a dynamic variable ordering heuristic2 6. They also indicate that the
variable ordering heuristics proposed so far in the CSP literature are often too shallow for
problems such as job shop scheduling. After replacing DSR with ORR in combination with
ABT, search efficiency went up by 16% and 11 additional problems were solved in less than 500
search states each. The SMU heuristic achieved a higher efficiency of 72% and solved 43
problems out of 60 in less than 500 states. Even this heuristic had trouble solving many
problems. In fact, it could hardly solve more problems than ORR&ABT. ORR&FSS, the
variable and value ordering heuristics advocated in this paper, yielded an impressive 86% search
efficiency, and solved 52 problems out of 60 in less than 500 search states27 . For the 52
experiments that it was able to solve, ORR&FSS never generated more than 78 search states and
never took over 150 CPU seconds to solve a problem. This heuristic combination also achieved
important speedups over all the other heuristics.

On problems with larger numbers of operations, the savings achieved by ORR&FSS appear to
become even more important, although the poor performance of the generic CSP heuristics
precluded systematic experimentation with such problems. At the current time, ORR&FSS has
been successfully applied to several hundred scheduling problems, including a large number of
problems with 100 operations, approximately 300 possible start times per operation, and
bottleneck loads close to 100% over the major part of each problem. The heuristics have also
been run on a smaller set of problems with 200 operations. Backtracking remained very low on
most of these problems.

26Experiments reported in [38] were also performed to compare the performance of the ORR heuristic, as it is
described here, with less dynamic variations of this heuristic, in which several critical operations were identified at
once. These experiments showed that the performance of the variable ordering heuristic quickly degrades as it
becomes less dynamic.

27In a more recent study, a combination of the ORR and FSS heuristics with two new backtracking schemes
solved an even larger number of experiments. A selective dependency-directed backtracking scheme solved 55
problems (45] and a backtracking heuristic that undoes decisions that are not always provably wrong was able to
solve all 60 problems.

39

9 Summary and Conclusions
This paper studied a variation of the job shop scheduling problem in which operations have to be
performed within one or several non-relaxable time windows. Examples of such problems
include factory scheduling problems in which some operations have to be performed within one
or several shifts, spacecraft mission scheduling problems, some factory rescheduling problems,
or any other scheduling problem with hard deadlines. These types of scheduling problems cannot
be solved with traditional scheduling techniques such as priority dispatch rules or similar one-
pass scheduling techniques. Traditional Mixed Integer Programming techniques which could
potentially deal with these problems have been overwhelmed so far by the combinatorial number
of binary variables required to account for limited resource capacities [27]. Instead, this study
demonstrated that many instances of these problems can be efficiently solved by combining
consistency enforcing techniques and look-ahead techniques to decide which operation to
schedule next and which reservation to assign to that operation.

Several variable and value ordering heuristics to guide the search procedure were successively
studied, including both generic heuristics which had been reported to perform particularly well
on other CSPs and specialized heuristics developed for similar scheduling problems. The review
indicated that generic CSP heuristics are usually not sufficient to solve hard CSPs such as job
shop scheduling. This is because these heuristics fail to properly account for the constraint
interactions induced by the high connectivity of the constraint graphs typically encountered in
job shop scheduling. Instead, a new probabilistic model of the search space was introduced
which allows to estimate the reliance of a variable (e.g. operation) on the availability of a value
(e.g. reservation), and the degree of contention among uninstantiated variables for the
assignment of conflicting values (e.g. contention among unscheduled operations for the
allocation of a resource over some time interval). Based on this probabilistic model, new variable
and value ordering heuristics were defined:

1. The "Operation Resource Reliance" (ORR) variable ordering heuristic selects the

operation that relies most on the most contended resource/time interval, and

2. The "Filtered Survivable Schedules" (FSS) value ordering heuristic assigns to that

operation the reservation which is expected to be compatible with the largest
number of survivable job schedules, i.e. job schedules that are expected to survive

resource contention.

Experimental results show that these two heuristics can efficiently solve many job shop
scheduling problems that could not be efficiently solved by prior CSP heuristics (both generic
CSP heuristics and specialized heuristics designed for similar scheduling problems). The results
indicate that the ORR and FSS heuristics not only yield significant increases in search efficiency
but also achieve important reductions in search time. Finally, the measures of value reliance and
contention presented in this paper have also been adapted to solve optimization version of the job
shop scheduling problem [38, 39].

40

The estimates of resource contention used in the ORR and FSS heuristics are based on several
independence assumptions. More sophisticated versions of these heuristics have also been
implemented, which attempt to better account for different dependencies, some using more
complex analytical models [33, 34, 37] others relying on Monte Carlo simulations [35]. The
increase in search efficiency generally achieved by these more sophisticated versions did not
seem to justify their heavier computational requirements.

Because the job shop scheduling CSP is NP-complete, no heuristic can be expected to efficiently
solve all instances of this problem. Nevertheless, more powerful variable and value ordering
heuristics may allow to further reduce the number of problems that cannot be solved efficiently.
Alternatively, new more powerful consistency enforcing techniques or more sophisticated
deadend recovery schemes could also further improve the efficiency of the search procedure2 8.

The heuristics presented in this paper are intended for job shop scheduling problems, i.e.
scheduling problems with both precedence and capacity constraints. The probabilistic measures
of reliance and contention that were described can be used in any resource allocation problem,
and more generally any CSP with disequality constraints (i.e. constraints preventing two
variables from being assigned the same value), since these problems can be formulated as
resource allocation problems (e.g. the N-queens problem can be formulated as a resource
allocation problem in which each queen/row is a task and each column is a resource29).
However, the lessons learned from this work go beyond job shop scheduling and resource
allocation problems. Fundamental weaknesses of generic variable and value ordering heuristics
often praised in the CSP literature were identified. Variable ordering heuristics like DSR count
the number of values left to each variable but do not account for the chances that these values
remain available in the future. Variable ordering heuristics like MW or MC count the number of
constraints incident to a variable but do not account for the tightness of these constraints. Value
ordering heuristics like ABT assume that the problem admits a tight tree-like relaxation. The
probabilistic model of the search space used to define the ORR and FSS heuristics allows to
overcome these weaknesses by providing a framework in which more sophisticated
approximations of variable criticality and value goodness can be defined. For instance, the ORR
and FSS heuristics rely on efficient probabilistic approximations of resource contention. These
measures of resource contention enable the scheduler to account for entire cliques of capacity
constraints rather than rely on advice based on tree-like relaxations of these cliques. Last but not
least, this work suggests that benchmark problems often used in the CSP literature are not
representative of hard problems such as job shop scheduling. It is hoped that this study will
prompt researchers in the field to look for new benchmark problems and new more powerful

28More recent experiments in which the ORR and FSS heuristics were combined with a heuristic backtracking
scheme that undoes decisions that are not always provably wrong were in fact able to efficiently solve all 60
problems of this study. See also [45) for experiments with another backtracking scheme.

29Constraints representing the ability of queens to attack each other along diagonals can he represented as
constraints further restricting admissible resource assignments.

41

heuristics for these problems.

The heuristics discussed in this paper all share a common weakness: they always perform the
same analysis independently of the problem that they are presented with, and regardless of the
difficulty of the current search state. A more flexible approach would allow for different
heuristics to be used according to the difficulty of the problem and even according to the
difficulty of the current search state. One such mechanism was implemented in an earlier
version of the system which relied on Monte Carlo sampling to measure resource contention.
Because the system measured resource contention between feasible job schedules, it was
possible to accurately determine if search had reached a state in which backtracking could no
longer occur. Like ORR, the variable ordering heuristic implemented in that version of the
system was particularly good at quickly reducing contention. As a consequence, search states
where backtracking could no longer occur were generally reached after 50% to 80% of the
operations had been scheduled. At that point, the system would arbitrarily complete the schedule
(i.e. using arbitrary variable and value orderings), which generally resulted in important
speedups30. A similar dynamic switch could also be implemented in the current version of the
system. Similarly, different consistency enforcing techniques could be applied to different
problems, different search states, or even to different parts of a same problem (e.g. enforcing
higher consistency levels with respect to capacity constraints at the bottlenecks). Preliminary
experimentation with such flexible consistency enforcing techniques has been reported by
Collinot and Lepape [4] and Xiong, Sadeh, and Sycara [45].

3°Consistency enforcement was still carried out in each search state, and was at that point sufficient to guaranmtee
(within the accuracy of the Monte Carlo sampling method) backtrack-free search.

42

Appendix A. Redundant Capacity Constraints
In order to rapidly detect the violation of capacity constraints, it was found useful to add a set of
redundant capacity constraints to the problem formulation.

These constraints express that, if two operations, OC and 0C, require the same resource and are
constrained in such a way that they each totally rely on the availability of some time interval on
that resource's calendar (even though they may still have several possible start times left), then
these two time intervals cannot overlap. Let Rk denote the p-th resource required by Ok and R1
the q-th resource required by Cd. Let also es4,, 1s4 and duk respectively denote the earliest
possible start time, latest possible start time, and duration of OC, and est., lst, and du. denote those

1 k I 1
of C•. The binary constraint between two operations, C, and Cd, can then be formulated as:

(Vp VqRk7 Rk) v (is +s4idi4) v (lst'Žýest'+ du')

v (lsrtŽeslk+duz) v (Isli>estý+du)

Figure 1-1 illustrates a simple situation where two operations Ok and 0d violate one such
constraint. Both operations are assumed to require the same resource, say R=RI =R.t estt+ O ls e, • "I • •t + z
eft'j=estjduj is Oj arliest possible finish tine, and/ft.= ls• duj its latest possible finish time.
Similarly ef is O&'s earliest possible finish time, and 0 s its latest possible finish time.

Similarly ef~~ i0' 0'lis wisi l l f nis iee ad resource latestwe possiltiis ie
Whichever start time is assigned to O., d will need resource R between l and efl; (this would
not be the case if lst' > eftý). Similarly 0 will need that same resource between Ist• and efti. In
Figure I-1, these two time intervals, namely [Ist, eftý[and [Isti, eft [, overlap. This indicates that
the resource is oversubscribed: a deadend state has been detected.

These types of conflicts can be efficiently avoided by maintaining for each resource a calendar
(e.g. a bit vector) that records each of the time intervals on which an unscheduled operation
totally relies (a similar but separate calendar is used to keep track of actual reservations). As
soon as two operations totally rely on overlapping resource/time intervals, a deadend state is
detected31.

3'Notice that this is not equivalent to achieving full arc-consistency. Full arc-consistency would require pruning
all start times that have become unavailable due to unscheduled operations that totally rely on the availability of
some resource/time intervals. This would require a more complex procedure in which some operations may have to
be inspected several times: as their earliest/latest possible start time intervals shrink, new operations may start to
totally rely on the availability of some resource/time intervals, or operations that already relied totally on some
resource/time intervals may see these intervals grow longer. This in turn may affect the earliest and/or latest
possible start times of other operations, and so on. Although these computations can still be performed efficiently, it
is not clear whether, on the average, they would further reduce total processing time.

43

- .. -,.. .*'/.'.m*'-Ok

oversubscribed
Interval

_ _ I 0 J

II I I

I __ ____ ____ ____

lstk Istk kst' let! eltk aft' Mt k IIf time
ti J J i J i J

,. earliest possible reservation

,\'. latest possible reservation

Interval of total reliance

Figure I-1: A situation with an oversubscribed resource that can easily be
detected.

44

Appendix B. Counting the Number of Survivable Schedules
This appendix describes a dynamic programming procedure that efficiently counts the number of
survivable job schedules (or more generally the number of survivable solutions to the relaxation
defined in Section 6.4 for the FSS value ordering heuristic) that are compatible with the

assignment of a reservation p to the current critical operation 01. This number was referred to as
compsurv•(t), where t is the start time allocated to O in reservation p, The procedure presented
here is a variation of a similar method developed by Dechter and Pearl for the ABT value
ordering heuristic [61 (see also [31]). While a direct generalization of Dechter and Pearl's
procedure would have an O(vlk 2) complexity (where v, is the number of operations in the
relaxation used by the FSS value ordering heuristic, and k the maximum number of possible
reservations of an operation in that relaxation), the procedure described here takes advantage of
the linearity of precedence constraints to reduce this complexity to O(v1 k).

Figure IM-l: A tree-like process routing, organized with the current critical operation as
its root. Arrows represent precedence constraints.

Figure 11-1 represents a prototypical tree-like process routing, which has been reorganized with
the current critical operation as the root of the tree. The arrows represent precedence constraints
between operations in the process routing. The children of the critical operation 01 in the tree are

those operations that are directly connected to O' by a precedence constraint, the grandchildren
the operations directly connected to these operations by precedence constraints, etc.

All the computations presented in this appendix refer to a single search state, in which
consistency checking has already been performed. The notations are those used in Section 6.4.
A few extra notations need to be defined:

9 surv,,(t)=2 Ie G survl (p), where G is the set of remaining reservations of 0,, with

stp = t

45

"• ap: the direct children of op that are after OP in the process routing;

"• P;: the direct children of 0p2 that are before (4 in the process routing;

"* A: the time granularity of the problem. In Section 6.4, it was assumed that A= 1 (i.e.
that all start times and end times have to be integers). For the sake of clarity, the

formulas presented in this appendix account explicitly for A.

In tree-like process routings, each operation O~p is the unique link between otherwise disjoint sets
of operations, that each correspond to one of its children. Each of these sets contains exactly one
child of operation 0' and defines a subproblem that only interacts with the other subproblems viap
operation 0.. Accordingly,

"* For each d e J,. we define BEF 4t) as the number of survivable solutions to the

subproblem defined by operation 01 and its descendants that are compatible with the
assignment of St =t to 01;

* For each 0• , e t, we define AF7i•(t) as the number of survivable solutions to the
subproblem defined by operation 01 and its descendants that are compatible with the

assignment of stt,=tto0;

Given that operation 01 is the only link between the subproblems defined by each one of its
children, we have:

compsurv.(t) = fl BEF' kt) x l AF7
Je Pi ke ai

Notice that this formula also relies on an independence assumption made in Section 6.4: the
probability that a solution to the relaxation survives contention is assumed to be given by the
product of the probabilities that each one of the reservation assignments in that solution survives
contention.

BE•.•t() is obtained by adding all the subproblem solutions compatible with the precedence
constraint st'.+du < r.

J J

BE,.,(t)= I [su,,c.) x H BEF•,(E)xH x AF'TI8 I A

T51djpeP qGcI

Similarly for AF7Ix(t), we have:

AF2j(t) [suriv4(r) x Hk BEF'r) x Hk AFI1,MT)]
,c a t1u eP EC

46

We can speed up the computation of this recurrence using partial sums:

AV t

PC ~ qG 01i

AF7i•(t)=AF.k(t+A)+ [survt(t+du•) x l BEF (r+du) x Il AF7t(t+du')]
l I

SE Ak uI e

The recurrence is initialized with:

BEF~jj(es/j-A)=O

AF74(1St'k+&) =O

and uses the convention:
1-=1
0

In order to compute compsurvl(r) for all remaining start times of the critical operation 0', the
system starts by computing all BEF,(t) or all AF&,,(t) at the leaf operations in the tree depicted
in Figure IIl-. The procedure then moves up in the tree by combining at each level the BEF,(t)

I • ,p
and oMpute) computed at the previous level. At each operation 0 in the tree, the procedure
computes at most X BEFi(Q) expressions if 1 is before O, its parent operation, or X AF74 (t)
expressions, if Op is after O (where X is the maximum number of possible start times of an
operation). Each such computation involves 2 multiplications and I addition. Hence, if v, is the
number of operations in the relaxation used by the FSS value ordering heuristic, computing all
compsurv (Q) can be done in 0(vt L) elementary computations. Computing
surv I(t)-• = survt,(p) for all the possible start times of all the operations in the relaxation
requires however 0(vlk) steps where k is the maximum number of reservations left to an
operation 32 . Hence the overall complexity of the procedure is also O(v k).

32The real complexity is actually O(vtkdu), where du is the duration of the longest operation in the relaxation.
This duration is assumed to be bounded by a constant.

47

References

[1] J.F.A~len.
Maintaining Knowledge about Temporal Intervals.
Communications of the ACM 26(11):832-843, 1983.

[2] K.R. Baker.
Introduction to Sequencing and Scheduling.
Wiley, 1974.

[3] J.R. Bitner and E.M. Reingold.
Backtrack Programming Techniques.
Communications of the ACM 18(11):651-655, 1975.

[4] A. Collinot and C. Le Pape.
Adapting the Behavior of a Job-Shop Scheduling System.
International Journal of Decision Support Systems, 1990.
To appear.

[5] Ernest Davis.
Constraint Propagation with Interval Labels.
Artificial Intelligence 32:281-331, 1987.

[6] Rina Dechter and Judea Pearl.
Network-Based Heuristics for Constraint Satisfaction Problems.
Artificial Intelligence 34(1): 1-38, 1988.

[7] Rina Dechter and Itay Meiri.
Experimental Evaluation of Preprocessing Techniques in Constraint Satisfaction

Problems.
In Proceedings of the Eleventh International Joint Conference on Artificial Intelligence,

pages 271-277. 1989.

[8] Rina Dechter, Itay Meiri, and Judea Pearl.
Temporal Constraint Networks.
In Proceedings of the First International Conference on Principles of Knowledge

Representation and Reasoning. 1989.

[9] R.E. Fox.
OPT: Leapfrogging the Japanese.
Just-in-time Manufacture.
In C.A. Voss,
IFS Ltd, Springer Verlag, 1987.

[10] Mark S. Fox, Norman Sadeh, and Can Baykan.
Constrained Heuristic Search.
In Proceedings of the Eleventh International Joint Conference on Artificial Intelligence,

pages 309-315. 1989.

[11] E.C. Freuder.
A Sufficient Condition for Backtrack-free Search.
Journal of the ACM 29(l):24-32, 1982.

48

[12] M.R. Garey and D.S. Johnson.
Computers and Intractability: A Guide to the Theory of NP-Completeness.
Freeman and Co., 1979.

[13] Matthew L. Ginsberg, Michael Frank, Michael P. Halpin, and Mark C. Torrance.
Search Lessons Learned from Crossword Puzzle.
In Proceedings of the Eighth National Conference on Artificial Intelligence, pages

210-215. 1990.

[14] Solomon W. Golomb and Leonard D. Baurnert.
Backtrack Programming.
Journal of the Association for Computing Machinery 12(4):516-524, 1965.

[15] Robert M. Haralick and Gordon L. Elliott.
Increasing Tree Search Efficiency for Constraint Satisfaction Problems.
Artificial Intelligence 14(3):263-313, 1980.

[16] L.A. Johnson and D.C. Montgomery.
Operations Research in Production Planning, Scheduling, and Inventory Control.
Wiley, 1974.

[17] Naiping Keng and David Y.Y. Yun.
A Planning/Scheduling Methodology for the Constrained Resource Problem.
In Proceedings of the Eleventh International Joint Conference on Artificial Intelligence,

pages 998-1003. 1989.

[18] Claude Le Pape and Stephen F. Smith.
Management of Temporal Constraints for Factory Scheduling.
Technical Report, The Robotics Institute, Carnegie Mellon University, Pittsburgh, PA

15213, 1987.
also appeared in Proc. Working Conference on Temporal Aspects in Information

Systems, Sponsored by AFCET and IFIP Technical Committee TC8, North Holland
Publishers, Paris, France, May 1987.

[19] A.K. Mackworth.
Consistency in Networks of Relations.
Artificial Intelligence 8(1):99-118, 1977.

[20] A.K. Mackworth and E.C. Freuder.
The Complexity of some Polynomial Network Consistency Algorithms for Constraint

Satisfaction Problems.
Artificial Intelligence 25(l):65-74, 1985.

[21] J.J. McGregor.
Relational Consistency Algorithms and their Applicadons in Finding Subgraph and

Graph Isomorphisms.
Information Sciences 19(3):229-250, 1979.

[22] Ugo Montanari.
Networks of Constraints: Fundamental Properties and Applications to Picture

Processing.
Technical Report, Department of Computer Science, Carnegie Mellon University,

Pittsburgh, PA 15213, 1971.
Also appears in Information Science, 1974, vol. 7,pp. 95-132.

49

[23] Nicola Muscettola, and Stephen Smith.
A Probabilistic Framework for Resource-Constrained Muti-Agent Planning.
In Proceedings of the Tenth International Conference on Artificial Intelligence, pages

1063-1066. 1987.

[24] B.A. Nadel.
Theory-based Search-order Selection for Constraint Satisfaction Problems.
Technical Report DCS-TR-183, Department of Computer Science, Laboratory for

Computer Research, Rutgers University, New Brunswick, NJ 08903, 1986.

[25] Bernard Nadel.
Tree Search and Arc Consistency in Constraint Satisfaction Algorithms.
Search in Articial Intelligence.
In L. Kanal and V. Kumar,
Springer-Verlag, 1988.

[26] D. Navinchandra.
Exploration and Innovation in Design.
Springer Verlag, 1990.

[27] G.L. Nemhauser and LA. Wolsey.
Integer and Combinatorial Optimization.
Wiley, 1988.

[28] Bernard Nudel.
Consistent-Labeling Problems and their Algorithms: Expected-Complexities and Theory-

Based Heuristics.
Artificial Intelligence 21:135-178, 1983.

[29] Peng Si Ow.
Focused Scheduling in Proportionate Flowshops.
Management Science 31(7):852-869, 1985.

[30] Judea Pearl.
Heuristics: Intelligent Search Strategies for Computer Problem Solving.
Addison-Wesley, 1984.

[31] Judea Pearl.
Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference.
Morgan Kaufmann, 1988.

[32] Paul W. Purdom, Jr.
Search Rearrangement Backtracking and Polynomial Average Time.
Artificial Intelligence 21:117-133, 1983.

[33] N. Sadeh and M.S. Fox.
Preference Propagation in Temporal/Capacity Constraint Graphs.
Technical Report CMU-CS-88-193, Computer Science Department, Carnegie Mellon

University, Pittsburgh, PA 15213, 1988.
Also appears as Robotics Institute technical report CMU-RI-TR-89-2.

[34] N. Sadeh and M.S. Fox.
Focus of Attention in an Activity-based Scheduler.
In Proceedings of the NASA Conference on Space Telerobotics. January, 1989.

50

[35] N. Sadeh and M.S. Fox.
CORTES: An Exploration into Micro-Opportunistic Job-Shop Scheduling.
In Workshop on Manufacturing Production Scheduling. IJCAI89 - Detroit, 1989.

[36] Norman Sadeh.
Look-ahead Techniques for Activity-based Job-shop Scheduling.
1989
Thesis Proposal.

[37] Norman Sadeh, and Mark S. Fox.
Variable and Value Ordering Heuristics for Activity-based Job-shop Scheduling.
In Proceedings of the Fourth International Conference on Expert Systems in Production

and Operations Management, Hilton Head Island, S.C., pages 134-144. 1990.

[38] Norman Sadeh.
Look-ahead Techniques for Micro-opportunistic Job Shop Scheduling.
PhD thesis, School of Computer Science, Carnegie Mellon University, March, 1991.

[39] Norman Sadeh.
MICRO-BOSS: A Micro-opportunistic Factory Scheduler.
Expert Systems with Applications: An International Journal, 1991.
To Appear in Special Issue on Scheduling Expert Systems and their Performances. Also

published as Carnegie Mellon University technical report CMU-RI-TR-91-22.

[40] Stephen F. Smith.
Exploiting Temporal Knowledge to Organize Constraints.
Technical Report, Robotics Institute, Carnegie Mellon University, Pittsburgh, PA 15213,

1983.

[41] Robert Endre Tarjan.
Shortest Paths.
In CBMS-NSF Regional Conference Series in Applied Mathematics. Number 44: Data

Structures and Network Algorithms, chapter 7. Society for Industrial and Applied
Mathematics, 1983.

[42] Robert Endre Tarjan.
Minimum Spanning Trees.
In CBMS-NSF Regional Conference Series in Applied Mathematics. Number 44: Data

Structures and Network Algorithms, chapter 6. Society for Industrial and Applied
Mathematics, 1983.

[43] R.J. Walker.
An Enumerative Technique for a Class of Combinatorial Problems.
Combinatorial Analysis, Proc. Sympos. Appl. Math.
In R. Bellman and M. Hall,
American Mathematical Society, Rhode Island, 1960, pages 91-94, Chapter 7.

[44] D.L. Waltz.
Understanding Line Drawings of Scenes with Shadows.
The Psychology of Computer Vision.
In P.H. Winston,
McGraw-Hill, New York, 1975.

51

[45] Yalin Xiong, Norman Sadeh, and Katia Sycara.
Intelligent Backtracking Techniques for Job Shop Scheduling.
Technical Report, Robotics Institute, Carnegie Mellon University, Pittsburgh, PA 15213,

1992.
Working Paper.

[46] Ramin Zabih and David McAllester.
A Rearrangement Search Strategy for Determining Propositional Satisfiability.
In Proceedings of the Seventh National Conference on Artificial Intelligence, pages

155-160. 1988.

4,

